Alexandre Vial

Full papers in referred journal

2015

  1. Apurve Saini, Thomas Maurer, Irene Izquierdo Lorenzo, Andre Ribeiro Santos, Jérémie Béal, Julie Goffard, Davy Gérard, Alexandre Vial, and Jérôme Plain.
    Synthesis and sers application of SiO2@Au nanoparticles. Plamonics, 10(4):791–796, 2015.
  2. Xuan Zhou, Claire Deeb, Serguei Kochtcheev, Gary P. Wiederrecht, Pierre-Michel Adam, Jérémie Béal, Jérôme Plain, David J. Gosztola, Johan Grand, Nordin Felidj, Huan Wang, Alexandre Vial, and Renaud Bachelot.
    Selective functionalization of the nanogap of a plasmonic dimer. ACS Photonics, 2(1):121–129, 2015.

2014

  1. H. Wang and A. Vial.
    Tunability of LSPR using gold nano-particles embedded in a liquid crystal cell. J. Quant. Spectrosc. Radiat. Transf., 146:492–498, 2014.

2013

    1. H. Wang and A. Vial.
      Plasmonic Resonance Tunability and SERS Gain of Metallic Nano-particles Embedded in a LC Cell. J. Phys. Chem. C, 117(46):24537-24542, 2013.
    2. Ana Luna, Demetrio Macias, Diana Skigin, Marina Inchaussandague, Daniel Schinca, Miriam Gigli, and Alexandre Vial.
      Characterization of the iridescence-causing multilayer structure of the ceroglossus suturalis beetle using bio-inspired optimization strategies. Opt. Express, 21(16):19189–19201, 2013.
    3. T. Maurer, N. Abdellaoui, A. Gwiazda, P.M. Adam, A. Vial, J.L. Bijeon, D. Chaumont, and M. Bourezzou.
      Optical determination and identification of organic shells around nanoparticles: application to silver nanoparticles. Nano, 8(2):1350016, 2013.
    4. H. Wang and A. Vial.
      Theoretical study of the anchoring influence on plasmonic resonance tunability of metallic nano-particles embedded in a liquid crystal cell. Plasmonics, 8(3):1335–1339, 2013.
    5. D. Macias, A. Luna, D. Skigin, M. Inchaussandague, A. Vial, and D. Schinca.
      Retrieval of relevant parameters of natural multilayer systems by means of bio-inspired optimization strategies. Appl. Opt., 52(11):2511–2520, 2013.

2012

    1. N. Dubrovina, L. Le Cunff, N. Burokur, R. Ghasemi, A. Degiron, A. De Lustrac, A. Vial, G. Lerondel, and A. Lupu.
      Single metafilm effective medium behavior in optical domain: Maxwell-garnett approxi- mation and beyond. Appl. Phys. A-Mater. Sci. Process., 109(4):901–906, 2012.
    2. A. Vial.
      Fall with linear drag and wien’s displacement law: approximate solution and Lambert function. Eur. J. Phys., 33(4):751-755, 2012.

2011

  1. M. Dridi and A. Vial.
    Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pairs. Plasmonics, 6(4):637-641, 2011.
  2. A. Vial, T. Laroche, M. Dridi, and L. Le Cunff.
    A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl. Phys. A-Mater. Sci. Process., 103(3):849–853, 2011.

2010

    1. M. Dridi and A. Vial.
      FDTD Modeling of Gold Nanoparticle Pair in a Nematic Liquid Crystal Cell. J. Phys. D: Appl. Phys., 43(41): 415102, 2010.
    2. M. Dridi and A. Vial. FDTD modeling of gold nanoparticles in a nematic liquid crystal: Quantitative and qualitative analysis of the spectral tunability. J. Phys. Chem. C, 114(21): 9541-9545, 2010.
    3. P. Viste, J. Plain, R. Jaffiol, A. Vial, P.-M. Adam, and P. Royer.
      Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. ACS Nano, 4(2): 759–764, 2010.

2009

    1. M. Dridi and A. Vial.
      Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance. Opt. Lett. 34(17): 2652-2654, 2009. (version html)
    2. A. Vial.
      An approximate and an analytical solution to the carousel-pendulum problem. Eur. J. Phys. 30(4): L75-L78, 2009. (version html)
    3. M. Consonni, J. Hazart, G. Lérondel, and A. Vial.
      Nanometer scale light focusing with high cavity-enhanced output. J. Appl. Phys., 105: 084308, 2009.
    4. M. Juan, J. Plain, R. Bachelot, A. Vial, P. Royer, S. Gray, J. Montgomery, and G. Wiederrecht.
      Plasmonic electromagnetic hot spots temporally addressed by photoinduced molecular displacement. J. Phys. Chem. A, 113(16): 4647–4651, 2009.
    5. C. Prodhon, D. Macías, F. Yalaoui, A. Vial, and L. Amodeo.
      Evolutionary optimization for plasmon-assisted lithography. In M. Giacobini, A. Brabazon, S. Cagnoni, G.A. Di Caro, A. Ekart, A.I. Esparcia-Alcazar, M. Farooq, A. Fink, P. Machado, J. McCormack, M. O’Neill, F. Neri, M. Preuss, F. Rothlauf, E. Tarantino, and S. Yang, editors, Applications of Evolutionary Computing, volume 5484/2009 of Lecture Notes in Computer Science, pages 420–425. Springer Berlin / Heidelberg, 2009.

2008

    1. A. Vial and T. Laroche.
      Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl. Phys. B-Lasers Opt., 93(1): 139-143, 2008. (version html)
    2. D. Macias and A. Vial.
      Optimal design of plasmonic nanostructures for plasmon-interference assisted lithography. Appl. Phys. B-Lasers Opt., 93(1): 159-163, 2008. (version html)
    3. A.-S. Grimault, A. Vial, J. Grand and M. Lamy de la Chapelle.
      Modeling of the near-field of metallic nanoparticle gratings: Localized Surface Plasmon Resonance and SERS applications. J. Microscopy, 229(3): 428-432, 2008. (version html)
    4. H. Ibn El Ahrach, R. Bachelot, G. Lérondel, A. Vial, A.-S. Grimault, J. Plain, P. Royer and O. Soppera.
      Controlling the plasmon resonance of single metal nanoparticles by near-field anisotropic nanoscale photopolymerisation. J. Microscopy, 229(3): 421-427, 2008.
    5. G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette and B. Jacquier.
      How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence. Nanotechnology, 19(3): 035705, 2008.

2007

  1. A. Vial and T. Laroche.
    Description of dispersion properties of metals by mean of the critical points model and application to the study of resonant structures using the FDTD method. J. Phys. D: Appl. Phys., 40(22): 7152-7158, 2007. (version html)
  2. T. Laroche, A. Vial and M. Roussey.
    Crystalline structure's influence on the Near-field optical properties of single plasmonic nanowires. Appl. Phys. Lett., 91(12): 123101, 2007. (version html)
  3. A. Vial.
    Implementation of the critical points model in the recursive convolution method for dispersive media modeling with the FDTD method. J. Opt. A: Pure Appl. Opt., 9(7): 745–748, 2007. (version html)
  4. A. Vial.
    Horizontal distance traveled by a mobile experiencing a quadratic drag force: normalized distance and parametrization. Eur. J. Phys., 28(4): 657–663, 2007. (version html)
  5. H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer and O. Soppera.
    Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization. Phys. Rev. Lett., 98(10): 107402, 2007.

2006

  1. D. Barchiesi, T. Grosges, and A.Vial.
    Measurement of decay lengths of evanescent waves: the lock-in non linear filtering. New J. Phys., 8(263): 1–10, 2006.
  2. J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer.
    Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics, 1(2-4): 135–140, 2006.
  3. A. Vial.
    Surface plasmon excitation on a sphere made of left-handed material. Plasmonics, 1(2-4): 129–134, 2006.
  4. A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle.
    Modeling of regular gold nanostructures arrays for sers applications using a 3D FDTD method. Appl. Phys. B-Lasers Opt., 84(1-2): 111–115, 2006.
  5. L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer.
    Surface enhanced raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement. Chem. Phys. Lett., 422: 303–307, 2006.

2005

    1. T. Grosges, A. Vial, and D. Barchiesi.
      Models of near-field spectroscopic studies: comparison between finite-element and finite-difference methods. Opt. Express, 13(21): 8483–8497, 2005.
    2. J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer.
      Role of localized suface plasmons in surface enhanced raman scattering of shape-controlled metallic particles in regular arrays. Phys. Rev. B, 72(3): 033407, 2005.
    3. Y. Gilbert, R. Bachelot, A. Vial, G. Lérondel, P. Royer, A. Bouhelier, and G. Wiederrecht.
      Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam. Opt. Express, 13(10): 3619–3624, 2005.
    4. C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.H. Chang, S.K. Gray, G.P. Wiederrecht, and G. C. Schatz.
      Near-field photochemical imaging of noble metal nanostructures. Nanolett., 5(4): 615–619, 2005.
    5. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle.
      Improved analytical fit of gold dispersion : application to the modelling of extinction spectra with the FDTD method. Phys. Rev. B, 71(8): 085416–085422, 2005. (version html)
    6. D. Barchiesi, A.-S. Grimault, T. Grosges, D. Macías, and A. Vial.
      Principle of apertureless scanning near-field optical microscopy: on the way to the optical metrology of nanostructures. J. Korean Phys. Soc., 47: S166–S174, 2005.

2004

                                            1. D. Macías, A. Vial, and D. Barchiesi.
                                              Application of evolution strategies for the solution of an inverse problem in near-field optics. J. Opt. Soc. Am. A, 21: 1465–1471, 2004.
                                            2. D. Macías, A. Vial, and D. Barchiesi.
                                              Evolution strategies approach for the solution of an inverse problem in near-field optics. In G.R. Raidl, S. Cagnoni, J. Branke, R. Corne, D.W.and Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G.D. Smith, and G. Squillero, editors, Applications of Evolutionary Computing, volume 3005/2004 of Lecture Notes in Computer Science, pages 329–338.Springer Berlin / Heidelberg, 2004.

2003

                                            1. R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer.
                                              Modeling recent experiments of apertureless near-field optical microscopy using 2d finite element method. Opt. Commun., 221(1-3): 13–22, 2003.

1995-2002

                                        1. Y. Pagani, D. Van Labeke, B. Guizal, A. Vial, and F. Baida.
                                          Diffraction hysteresis loop modeling in magneto-optical gratings. Opt. Commun., 209: 237–244, 2002.
                                        2. A. Vial, D. Barchiesi, and G. Parent.
                                          Spectroscopic study of the image formation in near-field microscopy, near an evanescent-homogeneous switching. J. Microscopy, 194(2): 265–270, 1999.
                                        3. A. Vial and D. Van Labeke.
                                          Theoretical comparison of illumination and collection mode images of magneto-optical dots. J. Microscopy, 194(2): 240–248, 1999.
                                        4. A. Vial and D. Van Labeke.
                                          Diffraction hysteresis loop modelisation in transverse magneto-optical Kerr effect. Opt. Commun., 153: 125–133, 1998.
                                        5. D. Van Labeke, A. Vial, V. A. Novosad, Y. Souche, M. Schlenker, and A. D. Dos Santos.
                                          Diffraction of light by a corrugated magnetic grating: experimental results and calculation using a perturbation approximation to the Rayleigh method. Opt. Commun., 124: 519–528, March 1996.
                                        6. D. Van Labeke, A. Vial, and D. Barchiesi.
                                          Near-field theoretical study of a magneto-optical grating. Ultramicroscopy, 61: 51–55, 1995.

Powered by CMSimple| Template: ge-webdesign.de| html| css| Login